Math 3063	Abstract Algebra	Project 2	Solutions
	Prof. Paul Bailey	March 2, 2009	

Definition 1. Let $f : A \to B$.

We say that f is *injective* if

$$f(a_1) = f(a_2) \implies a_1 = a_2.$$

We say that f is *surjective* if

 $\forall b \in B \exists a \in A \text{ such that } f(a) = b.$

We say that f is *bijective* if f is injective and surjective.

Problem 1. Let $f : A \to B$ and $g : B \to C$. Suppose that f is surjective and $g \circ f$ is injective. Show that g is injective.

Proof. Let $b_1, b_2 \in B$ such that $g(b_1) = g(b_2)$. We wish to show that $b_1 = b_2$. Since f is surjective, there exist $a_1, a_2 \in A$ such that $f(a_1) = b_1$ and $f(a_2) = b_1$. Applying g to these equations gives $g(f(a_1)) = g(b_1)$ and $g(f(a_2)) = g(b_2)$. But $g(b_1) = g(b_2)$, and since $g \circ f$ is injective, $a_1 = a_2$. Thus $f(a_1) = f(a_2)$, that is, $b_1 = b_2$. Therefore g is injective.

Problem 2. Let $f : A \to B$ and $g : B \to C$. Suppose that g is injective and $g \circ f$ is surjective. Show that f is surjective.

Proof. Let $b \in B$. We wish to find $a \in A$ such that f(a) = b. Let c = g(b). Since $g \circ f$ is surjective, there exists $a \in A$ such that g(f(a)) = c, that is, g(f(a)) = g(b). Since g is injective, f(a) = b. Therefore f is surjective.

Problem 3. Consider the relationship between composition and bijectivity.

- (a) Show that the composition of injective functions is injective.
- (b) Show that the composition of surjective functions is surjective.
- (c) Conclude that the composition of bijective functions is bijective.

Solution.

(a) Let $f: A \to B$ and $g: B \to C$ be injective functions; we wish to show that $g \circ f: A \to C$ is injective. Let $a_1, a_2 \in A$ such that $g \circ f(a_1) = g \circ f(a_2)$, that is, $g(f(a_1)) = g(f(a_2))$. Since g is injective, $f(a_1) = f(a_2)$. Since f is injective, $a_1 = a_2$. Thus $g \circ f$ is injective.

(b) Let $f : A \to B$ and $g : B \to C$ be surjective functions; we wish to show that $g \circ f : A \to C$ is surjective.

Let $c \in C$. Since g is surjective, there exists $b \in B$ such that g(b) = c. Since f is surjective, there exists $a \in A$ such that f(a) = b. Thus $g \circ f(a) = g(f(a)) = g(b) = c$. Thus $g \circ f$ is surjective.

(c) Let $f : A \to B$ and $g : B \to C$ be bijective functions; we wish to show that $g \circ f : A \to C$ is bijective. Since f and g are bijective, they are both injective and surjective. By (a), $g \circ f$ is injective, and by (b), $g \circ f$ is surjective. Thus $g \circ f$ is bijective. **Definition 2.** Let $f : A \to B$ and $g : B \to A$.

We say that g is an *inverse* of f if $g \circ f = id_A$ and $f \circ g = id_B$. We say that g is a *left inverse* of f if $g \circ f = id_A$. We say that g is a right inverse of f if $f \circ g = id_B$. We say that f is *invertible* if the exists an inverse for f. We say that f is *left invertible* if the exists a left inverse for f. We say that f is *right invertible* if the exists a right inverse for f.

Problem 4. Consider the existence of left and right inverses by giving examples.

- (a) Give an example of a function which is left invertible but not invertible.
- (b) Give an example of a function which is right invertible but not invertible.

Solution.

(a) Let $f: \mathbb{R} \to \mathbb{R}$ be given by $f(x) = \arctan x$. Then f is injective but not surjective, and so by Problem 5a is left invertible but not invertible.

(b) Let $f: \mathbb{R} \to \mathbb{R}$ be given by $f(x) = x^3 - x$. Then f is surjective but not injective, and so by Problem 5b, is right invertible but not invertible.

Problem 5. Consider the relationship between invertibility and bijectivity.

- (a) Show that a function is left invertible if and only if it is injective.
- (b) Show that a function is right invertible if and only if it is surjective.
- (c) Conclude that a function is invertible if and only if it is bijective.
- Solution. Let $f: A \to B$.
 - (a) We show by directions of the double implication.

 (\Rightarrow) Suppose that f is left invertible, and let $q: B \to A$ be a left inverse, so that $q \circ f = \mathrm{id}_A$. Let $a_1, a_1 \in A$ such that $f(a_1) = f(a_2)$. Applying g to both sides gives $g(f(a_1)) = g(f(a_2))$, so $id_A(a_1) = id_A(a_2)$; that is, $a_1 = a_2$. Thus f is injective.

(\Leftarrow) Suppose that f is injective. Then for every $b \in f(A)$ there exists a unique $a_b \in A$ such that $f(a_b) = b$. Let $a_0 \in A$. Define $g: B \to A$ by

$$g(b) = \begin{cases} a_b & \text{if } b \in f(A); \\ a_0 & \text{otherwise.} \end{cases}$$

Then q(f(a)) = a for all $a \in A$. Thus g is a left inverse for f.

(b) We show by directions of the double implication.

 (\Rightarrow) Suppose that f is right invertible, and let $q: B \to A$ be a right inverse, so that $f \circ q = \mathrm{id}_B$. Let $b \in B$. Let a = g(b). Then f(g(b)) = b, that is, f(a) = b.

 (\Leftarrow) Suppose that f is surjective. Then for every $b \in B$, we select an element $a_b \in A$ such that $f(a_b) = b$. Define $g: B \to A$ by $g(b) = a_b$. Then $f(g(b)) = f(a_b) = b$ for all $b \in B$, and g is a right inverse for f. (c) Now

f is invertible \Leftrightarrow f is left invertible and f is right invertible

 \Leftrightarrow f is injective and f is surjective

 \Leftrightarrow f is bijective.

Definition 3. Let $P, Q \in \mathbb{R}^2$ be given by $P = (x_1, y_1)$ and $Q = (x_1, y_2)$. The distance from P to Q is

$$d(P,Q) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}.$$

An isometry of \mathbb{R}^2 is a function $f : \mathbb{R}^2 \to \mathbb{R}^2$ such that d(f(P), f(Q)) = d(P, Q).

Three types of isometries are translations, rotations, and reflections.

A translation is described by (h, k), where $(x, y) \mapsto (x + h, y + k)$.

A rotation is described by (a, b, θ) , where (a, b) is a fixed point and θ is the angle of rotation.

Problem 6. Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ be an isometry such that $f = T \circ R$, where T is the translation described by (h, k) and R is the rotation described by (a, b, θ) . Suppose f(5, 0) = (1, 2) and $f(7, 0) = (2, 2 + \sqrt{3})$. Find h, k, a, b, θ .

Solution. Note that the distance from (1,2) to $(2,2+\sqrt{3})$ is 2, which is the same as the distance between (5,0) and (7,0). So, some isometry takes the first pair to the second.

Let L be the line through (5,0) and (7,0), and let M be the line through (1,2) and $(2,2+\sqrt{3})$. Then L: y = 0 and $M: y = \sqrt{3}x + 2 - \sqrt{3}$. The angle between these lines in 60°, and the intersection of these lines is at the point $A = (1 - \frac{2}{\sqrt{3}}, 0)$.

Let R be rotation about the point A by 60°; then R(L) = M. Let T be translation by the vector R(5,0) - (1,2). Then TR(5,0) = (1,2) and $TR(7,0) = (2,2 + \sqrt{3})$.